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Analysis of Inhomogeneously Filled Cavities
Coupled to Waveguides Using the VIE Formulatlo»n

Andreas Jostingmeier and A S. Omar, Senior Member, IEEE

Abstract— A method based on the volume integral equation
(VIE) formulation is presented which can be used to analyze
inhomogeneously filled cavities of arbitrary shape to which cylin-
drical waveguides of arbitrary cross section are coupled. The
inhomogeneity inside the cavity is described by a spatially de-
pendent permittivity. The method is applied to the problem of
scattering by dielectric bodies inside waveguides. Furthermore,
it will be demonstrated how the convergence of the method can
be accelerated.

I. INTRODUCTION

F the variety of methods for the analysis of passive

microwave components, only a few are capable of

dealing with arbitrary inhomogeneities. Such versatile methods
are ¢.g., the finite-difference [1], [2] and the finite-element [3],
[4] methods operating in spatial domain. On the other hand,
the VIE formulation is a generalized spectral-domain method
because it is based on the expansion of the electromagnetic
field with respect to suitable sets of eigenfnodes. Hence,
the. VIE formulation can be seen as the spectral-domain
counterpart of the infinite-difference and the finite-element
methods. Other methods ‘operating in the spectral-domain,
like the mode-matching method [5], [6] or the conventional
spectral-domain approach [7], [8], suffer from a lack of
versatility concerning the treatment of an inhomogeneity with
arbitrary space dependence.

In this paper, an inhomogeneously filled cavity which is
coupled to two parallel waveguides (as shown in Fig. 1)
will be considered. The extension to structures with more
waveguides is straightforward. The fact that the inhomogeneity
is modeled as a spatially dependent permittivity is another
restriction which is not essential for the VIE formulation. A
space-dependent permeability can be treated in the same way.

The method can even be apphed to 1nh0mogenelt1es showing
tensor character.

The VIE formulation is based on the expansion of the
electromagnetic field inside the cavity with respect to complete
sets of eigenmodes of the empty, short-circuited cavity [9].
"These sets contain the divergence-free resonant modes as well
as the curl-free eigenfunctions [10]. If instead of the electric

Manuscript received July 2, 1992; revised November 4, 1992. This work
was supported by the Deutsche Forschungsgemeinschaft.

A. Jostingmeier is with the Technische Universitit Braunschweig, Insititut
fiir Hochfrequenztechnik, Postfach 33 29, D-W-3300 Braunschweig, Ger-
man

AyS Omar was with the Technische Universitiit Braunschweig, Insititut fiir
Hochfrequenztechnik, Postfach 33 29, D-W-3300 Braunschweig, Germany.
He is now with Technische Universitit Hamburg-Harburg, Arbeitsbereich
Hochfrequenztechnik, Postfach 90 10 52, D-W-2100 Hamburg 90, Germany.

IEEE Log Number 9209359.

field the divergence-free electric displacement is expanded, the

. curl-free electric field eigenfunctions need not be considered.

On the other hand, the magnetic fields of the resonant modes
are not sufficient for the expansion of the magnetic field.
This can be explained by decomposing the structure into
cavity and waveguides. According to the equivalence principle
[11], the coupling apertures can be short circuited if the
nonvanishing tangential electric field there is replaced by two
surface magnetic currents at both sides of the short circuit.
Due to these currents, the curl-free eigenfunctions are also
necessary. Substituting the above described expansions into
Maxwell’s equations and expanding the electromagnetic ficlds
in the apertures with respect to the waveguide eigenmodes, the
expansion coefficients of the electromagnetic field inside the
cavity are obtained in terms of the expansion coefficients of
the electric fields in the apertures. Applying Galerkin’s proce-
dure, one gets, from the continuity of the tangential magnetic
fields at the apertures, the cavity expansion coefficients in
terms of those of the magnetic fields in the apertures. Eliminat-
ing the expansion coefficients of the cavity field, one arrives
at a linear homogeneous system of equations relating the
expansion coefficients of the magnetic fields in the apertures
to those of the electric fields which is just the generalized
admittance matrix of the cavity.

From another point of view, the VIE formulation is based
on the expansion of an equivalent polarization current (the
corresponding integral is taken over the volume of the cavity),
the method presented here has been called “volume integral
equation” formulation.

The analysis of the structure shown in Fig. 1 takes a lot
of computational effort because, in general, all cavity eigen-

f

Fig. 1. Inhomogeneously filled cavity coupled to two parallel waveguides.
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. modes are coupled by the spatially dependent permittivity.
The computations can be simplified if we consider cylindrical
waveguides containing cylindrical dielectric inserts according
to Fig. 2. The general formulation will be applied to this
case. Then all cavity eigenmodes of different axial orders are
decoupled. In order to demonstrate. the validity of the VIE
formulations, we go- even one step further and restrict the
analysis to classes of field distributions which are decoupled
from all other fields. Nevertheless, it will be shown how the
numerical efficiency of the VIE formulation can be enhanced
by some convergence accelerating procedures.

II. THEORY

A. Basic Formulation

Let {E,} and {H,,} denote the sets of electric and magnetic
fields, respectively, corresponding to the resonant modes of
the empty short-circuited cavity. The set of curl-free magnetic
eigenfunctions will be denoted by {G,}. Then the following
orthogonality relations hold:

v €0
\% Ho
14 Ho
/Hn-G;*ndV:O (1d)
v

where the asterisk (*) and 8, denote complex-conjugate and
the Kronecker delta, respectively. V' denotes the volume of the
short-circuited cavity. W, and V,, are normalization quantities
corresponding to field energies.

Due to the divergence-free nature of the electric displace-
ment inside the cavity, the set {E,} is sufficient for its
expansion

(22)

where w,, and wg are the resonance frequency of the nth
resonant mode and a normalization frequency, respectively.
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Fig. 2. Cylindrical waveguide containing a cylindrical dielectric insert.
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For the expansion of the magnetic field, we have to take both
sets {H,} and {G,} into account

H:iCan’l‘idnGn-

Substituting (2a) and (2b) into Maxwell’s equations and mak-
ing use of the orthogonality property of the cavity eigenmodes
(1a)—(1d), one gets

(2b)

(3a)

oo w 2 1
chmalm - (—) Whon = —
o Wo Jwo

Y ydy =

wo

Jwo
: (/5(2) (kxE) -G dS
- /S N (k X E) e dS> (3c)

W E!-E
C’nm =€y En 5 / n L dV
wo Jv o &

(d)

where & and Sé") are the umit vector in the axial direction
and the coupling aperture between the cavity and the wvth
waveguide, respectively.

The aperiure fields are expanded with respect to the eigen-
modes of the waveguides. The transverse electric and the
transverse magnetic fields in the aperture corresponding to the
vth waveguide. read

E{) = i ViVl + i VIO (Vih) x k) (4a)

[e9) oo
B =312 (kz x Viel)) + 3 IV @)
The eigenmodes obey the orthogonality relations’

Viel? - Ve ds = 6,27 (5a)

5

/ . Vb Vh) ds = ;P (b)
Sgl/

/ (vteg) x vthgg.)) kdS=o0. (5¢)
589

The normalization quantities PF* and P"*) describe the
power flow of the ith TM and the ith TE eigenmode in the
vth waveguide, respectively.
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The aperture tangential electric fields are continuous
I;:XE'S(V):I::XES}). 6)
g

Substituting (6) and (4a) into (3b) and (3c) yields

(= () o= (1wvers

- [Rw]ve [Rha)]vh(l))
(7a)

_%[V]d _ ([56(2)] Ve 4 [5h0]yhe)

- [s0]vew - [50] Vh(l))
(7b)

where [C], [W], and [V] are a symmetric matrix with elements
Cnm according to (3d) and diagonal matrices with elements ac-
cording to (1a)—(1c), respectively. The quantities a, d, V**),
and V*®) are column vectors containing the elements @y, dy,
V™), and V"), respectively. The matrices [Re®)], [RF®)],
[5°®)], and [S™*)] containing the elements R\, R:™,
S;g"), and S,’;("), respectively, represent the coupling between
the -waveguides eigenmodes and the cavity eigenmodes.

e(v 1 v * 7
R - L (Vte( ) x Hn) kdS  (8a)
2 ]wo Sgy) 2?
v 1
R = 7o fo Vb - HY dS (8b)
ew) _ 1 ™ ). q
w = /S o (Vtem X Gn) kdS  (8¢)
v 1 *
Sh) = o /5 " v.h) . Gz dS. (8d)

The series representation of ¢,.FE according to (2a) does
not converge uniformly. The tangential electric fields of the
short-circuited cavity eigenmodes vanish at the apertures Sé")
which is not true for the original field. On the other hand, the
series representation of the magnetic field according to (2b)
converges uniformly. Hence, the boundary condition for the

magnetic fields
kx H|g=kx HY ©)
g

can be directly exploited by applying Galerkin’s procedure.
This yields

—jWO([Re(”)]Tc+ [Se(”)]Td) = [Pe]r® (100
-jwo([Rh(")]Tc—f— [Sh(”)] Td) - [Ph<V>]Ih<”). (10b)

The superscript { signifies the conjugate transpose of the corre-
sponding matrix. [P()], [P*)], and T*®), T*(*) represent
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diagonal matrices and column vectors, resFectively, containing
the elements Pf), PP 15 and ™) respectively.
From (3a), (7a), (7b), (10a), and (10b), the cavity field
expansion coefficients a,, ¢,, and d,, can be eliminated. This
results in a linear system of equations relating the expansion
coefficients of the transverse magnetic apertures fields to those
of the transverse electric fields. The matrix equation represents

the generalized admittance matrix of the structure
I [yan]  [y@2]7(v®
@]~ [ [yev]  [ye2)] } v |-

The matrix elements are given by

(11a)

[Y(Vu)] = —(-1)*jw [p(V)] -
-1
]’ ([0] - (w%)z[W]) R¥]

o [5@)]*[1/]—1 [Sm]

(11b)

The matrices [R®)], [S®)], and [P*)] combine the TM
and the TE eigenmodes of the waveguides.

o= [welfee]] o
=[] s
[p(u>] _ [[P["O(]”)} [P[g]u)]] , (11¢)
The same holds for the column vectors V() and T @)
Vo) = {VW)] (116
vel)
o[ aw

The matrices [C] and [V] describe the coupling of the reso-
nant modes and the curl-free eigenfunctions of the cavity
by inhomogeneity, respectively. In general, all eigenmodes
are coupled, which leads to large matrices and a lot of
computation; but in the simpler case—when the cavity is a
section of a waveguide which contains a cylindrical dielectric
insert—the analysis is simpler.

B. Scattering by Dielectric Bodies Inside Waveguides

If the cavity is represented by a waveguide section according
to Fig. 2, the eigenmodes of both waveguides to which the

cavity is coupled are identical.
=e,;

(12a)
(12b)

€z

by = h®) .
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In the transverse direction, the cavity eigenmodes can be
formulated in terms of the waveguide eigenmodes; whereas
in the axial direction, we have a sine or cosine dependence.
Substituting the electric fields of the cavity eigenmodes into
(3d) and taking the orthogonality property of sine and cosine
into account, we obtain

WP
hh _ eoL wzn jn Vihzi - Vihs,
Ol = b g 2, [ TR 45 (139
h _ oL whw n (%) (Viesj x Vihz) ¢
Corjm = Snm—~ 2k s, - -k dS
(13b)
WP
Ceh = 6nm 6OL wzn mn (Vtezz X Vthzj) I% s
g 2 CL)O kle Sy €p
(13¢c)
e GOL wz n
Ol ym = bam =5 Zg]
nw 2
. (T) / Vies - Vtez] ds
kzekje' Sy €r
(1+5n0)keke/ €zz€z.7 dS)
S, Er
(13d)
where w, and w! are the resonance frequencies of the TM

and the TE cavity eigenmodes of transverse order 7 and axial
order n, respectively.

2 nw\ 2
wh, = corf (k2)™ + (T) (14a)

2
wh, = oy (6) + () (140)
The cutoff wavenumbers of the ith TM and the ¢th TE wave-
guide eigenmodes are represented by kf and k!, respectively.
¢o and L denote the free-space velocity of light and the
length of the cavity, respectively. In (13a), the superscript
hh means that the coupling between two TE eigenmodes is
considered. The meanings of the superscripts he, eh, and ee
are similar. Note that in (13a)—(13d), all different axial orders
are decoupled. Furthermore, the volume integral has turned
into an integral over the cross section S, of the waveguide.

The apertures and the waveguide cross section are identi-
cal. This leads to a lot of simplifications for the quantities
describing the coupling between the cavity and the waveguide
eigenmodes, some of which even vanish. This happens when
the coupling between a TE cavity eigenmode and a wave-
guide eigenmode of TM type (and vice versa) is considered.
Substituting these results and (13a)—(13d) into (11b), one
arrives at
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Yhh(l/u) _

i3

cos{n®)

A h wn,jn
wO'u’O n=1 wznw]n

N ks, cosh(kzhL(l - %)))

_(_1)u(jwph > () Dhh

jwpo  sinh(k"L)

(15a)
yhem — )MJWGOP; (WT) ]nDhe cos(n®)
¥ Wgﬂokjn ‘ L ln in, jn

(15b)
eh(vp) _ _(_ MwaOPJh - ﬁ‘z z'n eh
Y = (-1 :1(L) D% gn cos(n)

(15¢)

Pe b
Vo = ()Ll S D, cos(n)
1] n=0
(15d)
with
_J0, v=upn
6_{7r’ vy (15e)
The matrix
[[D"h] [D"] ] _
[Deh] [Dee]
-2 el T
[ wo (16)

2

h
[C=*] o= - () ]
has been introduced to allow a concise notation. The cavity
normalization quantities W§,, W}, and V,,, can be expressed
in terms of the waveguide normalization quantities P and

ph.

Wk = ég—opih (172)
2
Leo ("T)
We, = 14+ L2 V(14 8,0)P° 17b
TN ( )’ ( 0) (17b)
I
Vin = Z2(1+ 80) P! (170)

In (11b), the influence of the curl-free eigenmodes is given
by the term

(= 1)*jw [p(v)] -

1 [S(”)] T{v]—l [S(u)] .
o\2
()
The summation which is implied in this expression can ana-
lytically be evaluated leading to

khé;; cosh(kPL(1— £2))

Y Vi
-(=1) Jwhko smh(kth)
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in (15a). The curl-free cavity eigenfunctions enter the hh
part of the generalized admittance matrix only because the
coupling between these eigenfunctions and the TM waveguide
eigenmodes vanishes.

The computation of the generalized admittance matrix ac-
cording to (15a)—(15d) is less CPU time and memory consum-
ing than the general formulation. Due to the decoupling of the
cavity eigenmodes of different axial orders, only a number of
two-dimensional matrices (instead of one three-dimensional
matrix) have to be inverted. The numerical efficiency, how-
ever, can still be enhanced by introducing some convergence
accelerating procedures.

C. Convergence Acceleration

For the sake of simplicity, the analysis will be restricted
to TE electromagnetic fields only in order to discuss the
convergence accelerations. This restriction is possible because,
for some structures, a subset of TE fields can be found which
is decoupled from all other fields. Examples include the TE,,o
fields in a rectangular waveguide containing a dielectric slab
extending from top to bottom.

In implementing the formulation on a computer, all infinitely
dimensioned matrices and infinite summations have to be
truncated. For large orders, the matrix elements and the sum
terms can be replaced by their asymptotic values. If a closed-
form expression for a series with asymptotic sum terms or
an analytic form of the inverse of an infinitely dimensioned
matrix with asymptotic elements exists, the convergence can
be accelerated considerably.

First the series of (15a) with respect to the axial order n
should be examined. For our purpose, the series is reformu-
lated

()
thwh D3y jncos(n®) =

nm 2
——(?)—5}-L~}L(n) cos(n®). (18a)

For the matrix [Ehh(n)], with elements —ﬁfjh(")

[l—)-hh(n)] ([th] W2 [Qh(n)] —2) _

The matrix [Q2"(™)] is a diagonal matrix containing the reso-

nance frequencies w’,

, there holds

© (18b)

Q™ = g0k (18¢c)
The matrix [Q""] with the elements
hh _ / Vihsi Vihzy g (18d)
3 s, €, )

describes the transverse coupling of the eigenmodes. It does
not depend on the axial order n. For large n, w? /(wz"n)z
behaves like 1/n2. In this case, [ﬁhh(n)] is approximately
equal to [Q""] . For a cos(n®)/n? dependence of the sum
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terms, a closed-form expression of the series exists. The final
result is

et nw 2
Z (hT)h Dhh n €08(nO)
n=1 Yin¥in
2wd o~ (5E) hh(n)
— D,. " cos(n®
oL 2 gy )
L\? 1
L hh1~
+ WC%) ([Q ] )z]
2 0 cos(n®)
(? - (@r-6) nz::l 3 ) (19)
The term
2
™
i — (27 — ©)

represents the closed-form expression of the asymptotic series
from which

XN: cos(n®)

n=1 n?
has to be subtracted because, in the range from n = 1 to N,
the asymptotic representation of the sum terms is not valid and
the original series has to be computed.

Using (19), we expect rapid convergence as soon as the
asymptotic representation of the sum terms is valid. Compared
to the summation of the original series, the convergence
acceleration leads to a strong reduction with respect to the
number of sum terms which have to be taken into account.

In order to study the convergence with respect to the trans-
verse order, we should look at the matrix inversion occurring
in (18b). The convergence associated with the inversion of the
infinitely dimensioned matrix is very slow. This means that

even if a huge matrix is inverted, only a small part of [th n)]
corresponding to the low transverse orders is approximately
correct. The convergence can be accelerated if, instead of the
numerical inverse of the truncated original matrix, the analytic
inverse of an infinitely dimensioned matrix with asymptotic
elements is considered.
For large transverse orders 4, w?/(w?,

Hence, [Ehh(n)] is approximately given by

2
) tends to zero.

—hh(n) [th] _ w2 [Qh(n)] B [ hh] -1
[D ] ~ 11 11 12 (20a)
Q4] [Q53]
with the submatrices
[QHL] - (Qil]h)1<z<M 1<j<M (20b)
Q1] = (th)1<z<M M<j<co +(200)
[ }2‘{"] = (th)M<z<oo 1<5<M (ZOd)
[ gg] :( hh)M<1<oo,M<j<oo (20¢)
h(n) h(n)
[Q ] (Q’j )15i§M,1gng' (209

Equation (20a) means that w? /(wfn)2 can be neglected in
comparison to the diagonal elements of [th] for 1 > M.
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Evaluating the matrix inversion of (20a) with the submatrices
defined in (20b)—(20f) leads to

[th(n)j]
(1 - fatT o) o] ool )
(21a)

where [Dll( )] denotes the upper left corner of [ﬁ

[th(n)] (Ezh(n))lgiéM,lngM.

hh(n)]

(21b)

Let us now consider the inverse of the infinitely dimen-
sioned matrix [Q""] consisting of the submatrices according
to (20b)-(20e). The inverse of [Q""] is correspondingly

subdivided into the matrices [ e } [Q’IS’I ] [ ot ] and

@]

o] [ate]
o] fe]

[ ’1’{” ! ] reads

[@41] = ([@i] - @] (s ' es]) . e
Substituting (22b) into (21a) yields
D3] = ([o] " e[l 7). e

Comparing (23) to the original equation (18b) shows that the
convergence acceleration in the transverse direction can be
carried out by simply replacing the truncated coupling matrix
[Q"*] by the numerical inverse of its truncated analytical

inverse [Q"M I]_l

In order to evaluate (19) and (23), it is necessary to know the
inverse of the infinitely dimensioned matrix [Q""]. In [12],
it has been proven that the analytical inversion of [Q""] is
obtained if one replaces ¢! in (18d) by ¢,. Hence, for the
elements of [Q"™T], we get

Qi = /s € Vihzi - Vihy; dS. (24)

The matrix [Q""] does not appear in the formulation any-
more. Therefore, only its inverse as given by (24) has to be
calculated. )

The application of (23) and (24) instead of the original
relation (18b) leads to a strong reduction in the size of the
transverse coupling matrix which is necessary in order to
achieve convergence. This is especially important because the
number of operations required for the inversion of an (n X n)
matrix is proportional to n3.
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I1I. NUMERICAL RESULTS

Numerical results are computed for structures with the cross
sections shown in Figs. 3 and 4. In describing microwave
components, the scattering matrix is more common than
the admittance matrix. Therefore, the generalized admittance
matrix which we get from the analysis is transformed into the
corresponding scattering matrix.

Fig. 3 shows the cross section of a circular waveguide
containing a dielectric cylinder of length L. The azimuthally
independent TE fields are decoupled from all other fields and
can consequently be treated as a separate class. This follows
from (13a)—(13d). In these equations, the integral over the
cross section of the waveguide S, can be decomposed into
a radial and an azimuthal integration. Due to the rotational
symmetry of the structure, all fields show a sine or cosine
azimuthal dependence. Keeping the orthogonality property of
these functions in mind, all fields of different azimuthal orders
are decoupled. In addition, for azimuthally independent fields,
TE and TM fields are not coupled because

(Viezi X Vihag) -k

(

«—za‘J

2a

Fig. 3. Cross section of a circular waveguide containing a dielectric cylinder.
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Fig. 4. Cross section of a rectangular waveguide containing a dielectric slab.
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vanishes in this case. The elements of [Q""7] for azimuthally
independent TE fields read

hh,I __
Qij -

(k—hli—)-g) Jp(kka)+J2 (kka)

- ara- ol _

i

, J§(kta) Y

T ki g (kia)Ji(kha)~k) gy (kfa)n(kia) .

25(1—¢) Jo(kfa)Jo(k}”a)((kf)z—(k?)z) , tFEJ
(25)

where @ and a denote the radii of the dielectﬁc cylinder and

the circular waveguide, respectively. Jy and J; are the Bessel -

functions of order 0 and 1, respectively. The prime (') means
the derivative of the corresponding function with respect to
its argument.

Fig. 5 shows the frequency dependence of the' scattering
parameters sy1 and sio for the Hy; circular waveguide eigen-
mode. The frequency band extends from the cutoff frequency
of this eigenmode to that of the next higher eigenmode. In this
band, several resonances are observed. Comparing the results
to those of a mode-matching method [13], the curves are so
close together that differences cannot be seen.

The results of Fig. 5 have been achieved with a maximum
transverse order M = 20 and a maximum axial order N =
100. The results do not change noticeably as long as M > 10
and N > 10 are maintained. Applying the formulation without
convergence accelerations, even for A/ = 50 and N = 200,
the .resulis are not stable. This case requires approximately

2500 times more CPU time than the case with M = 10 and

abs(sqyq)(—1,

abs(s{p)(—=) in dB
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“Fig. 5. Frequency dependence of the scattering parameters of the Hox
eigenmode corresponding to the structure shown in Fig. 3 with @/a = 0.25,
L/ll = 0.5, € = 10, M = 20, N = 100.
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N = 10, which underscores the necessity for convergence
accelerations. .

In Fig. 4, a rectangular waveguide which contains a di-
electric slab of length L is shown. For this structure, it can
be proven that the y-independent TE fields are decoupled
from other y-dependent fields. For this class, the elements of
[Q""T] are given by

hh,J _
Q =

ij
in(2k" as ) —sin(2k"
1— (1 _ 67‘) (aTZ _ aTl B sm( .ba;;)k?s;n( 7,0’1) )
s sn( (848 )sin (484} )
E(]‘ - 6,«) —

i 7

sin((kf+k?)al)—sin((k?+k}”)a2) g
- k:‘—f-k;‘ 9 7]

i=j

\

(26)

where the coordinates a, a1, and ay are defined in Fig. 4. Fig. 6
shows the frequency dependence of the scattering parameters
for the Hyo rectangular waveguide eigenmode. After studying
the convergence of the results, statements which are similar to
those valid for the circular waveguide structure can be made.

In Table I, the results of the VIE formulation are compared
to those of two other methods [14], [15]. If we consider a
dielectric slab with

L ar2—a

—_— = _u << 17

a Coa
it should behave approximately like. a circular dielectric post
which has the same cross sectional area. In [14], this structure

abs(sqy1)(—),

abs(sqo)(—==) in dB

TT T TP T T T T T T TITTTTE

arglsygq)(—),
arg(sqo)(—=]) in ©
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e (1T e g -

3.5 4, 4.5 S 5.5 8

kg a

Fig. 6. Frequency dependence of the scattering parameters of the Hio
eigenmode corresponding to the structure shown in Fig. 4 with a1 /a = 0.25,
azfa =0.75 Lia =05, ¢ =5 M =20, N = 100.
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TABLE 1
COMPARISON OF THE SCATTERING PARAMETERS OF THE VIE FORMULATION WITH THE RESULTS OF [14] AND [15] ForR
THE STRUCTURE SHOWN IN FIG. 4 WiTH a1 /a = 0.45, as/a. = 0.55, L/a = 0.1, ¢, = 10, M = 50, N = 50.

VIE Formulation

Results from [14] Results from [15]

[s11] . |s21] s11] |s21] [s11] [s21]
# koa in dB in dB in dB in dB in dB in dB
1 3.173 —0.787 —7.807 —0.783 —7.825 —0.785 —7.815
2 3.515 —4.105 —2.137 —4.087 —2.148 —4.089 2147
3 3.857 —4.860 —1.717 —4.834 —~1.730 —4.828 —1.733
4 4.199 —4.944 —1.677 —4.911 —1.693 —4.905 —1.695
5 4.541 —4.737 —1.778 —4.696 —1.799 —4.702 —1.796
6 4.883 —4372 ~1.975 —4323 —2.004 —4349 —1.989°
7 5.266 —3.909 —2.266 —3.852 —2.305 —3.903 —2.270
8 5568 —3.378 —2.672 —3.314 —2.726 3384 —2.667
9 5.910 —2.796 —3.236 —2.726 3314 —2.807 —3224
10 6.252 —2177 —4.043 ~2.103 —4.159 —2.187 —4.028

is characterized by an equivalent circuit consisting of lumped
elements; whereas in [15], a surface integral formulation has
been applied. The results of the three methods are in good
agreement, which proves the validity of the VIE formulation.

IV. CONCLUSIONS

Inhomogeneously filled cavities coupled to waveguides have
been analyzed using a VIE formulation. In the basic formula-
tion, the inhomogeneity inside the cavity may be an arbitrary
function of space. It has been shown that the application of
the method to scattering by dielectric bodies inside wave-
guides leads to several simplifications. In-order to enhance
the numerical efficiency of the formulation, convergence ac-
celerating procedures have been discussed. Numerical results
have been calculated for some structures. The validity of
the method has been checked by comparing the results to
those obtained by other methods. From the comparison of the
computational requirements of the VIE formulation with and
without convergence accelerations, it has been demonstrated
that the numerical efficiency is drastically enhanced by the
convergence accelerations.
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