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Analysis of Inhomogeneously Filled Cavities

Coupled to Waveguides Using the VIE Formulation
Andreas Jostingmeier and A. S. Omar, Senior Member, IEEE

Abstract— A method based on the volume integral equation
(VIE) formulation is presented which can be used to analyze
inhomogeneously filled cavities of arbitrary shape to which cylin-
drical wavegnides of arbitrary cross section are coupled. The
inhomogeneity inside the cavity is described by a spatially de-
pendent permittivity. The method is applied to the problem of

scattering by dielectric bodies inside waveguides. Furthermore

it will be demonstrated how the convergence of the method can
be accelerated.

I. INTRODUCTION

OF the variety of methods for the analysis of passive

microwave components, only a few are capable of

dealing with arbitrary inhomogeneities. Such versatile methods

are e.g., the finite-difference [1], [2] and the finite-element [3],

[4] methods operating in spatial domain. On the other hand,

the VIE formulation is a generalized spectral-domain method

because it is based on the expansion of the electromagnetic

field with respect to suitable sets of eigenmodes. Hence,

the VIE formulation can be seen as the spectral-domain

counterpart of the infinite-difference and the finite-element

methods. Other methods operating in the spectral-domairi,

like the mode-matching method [5], [6] or the conventional

spectral-domain approach [7], [8], suffer from a” lack of

versatility concerning the treatment of an inhomogeneity with

arbitrary space dependence.

In this paper, an inhomogeneously filled cavity which is

coupled to two parallel waveguides (as shown in Fig. 1)

will be considered. The extension to structures with more

waveguides is straightforward. The fact that the inhomogeneity

is modeled as a spatially dependent permittivity is another

restriction which is not essential for the VIE formulation. A

space-dependent permeability can be treated in the same way.

The method can even be applied to inhomogeneities showing

tensor character.

The VIE formulation is based on the expansion of the

electromagnetic field inside the cavity with respect to complete

sets of eigenmodes of the empty, short-circuited cavity [9].

These sets contain the divergence-free resonant modes as well

as the curl-free eigenfunctions [10]. If instead of the electric
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field the divergence-free electric displacement is expanded, the

curl-free electric field eigenfunctions need not be considered.

On the other hand, the magnetic fields of the resonant modes

are not sufficient for the expansion of the magnetic field.

This can be explained by decomposing the structure into

cavity and waveguides. According to the equivalence principle

[11], the coupling apertures can be short circuited if the

nonvanishing tangential electric field there is replaced by two

surface magnetic currents at both sides of the short circuit.

Due to these currents, the curl-free eige:functions are also

necessary. Substituting the above described expansions into

Maxwell’s equations and expanding the electromagnetic fields

in the apertures with respect to the waveguide eigenmodes, the

expansion coefficients of the electromagnetic field inside the

cavity are obtained in terms of the expansion coefficients of

the electric fields in the apertures. Applying Galerkin’s proce-

dure, one gets, from the continuity of the tangential magnetic

fields at the apertures, the cavity expansion coefficients in

terms of those of the magnetic fields in the apertures. Eliminat-

ing the expansion coefficients of the cavity field, one arrives

at a linear homogeneous system of equations relating the

expansion coefficients of the magnetic fields in the apertures

to those of the electric fields which is just the generalized

admittance matrix of the cavity.

From another point of view, the VIE formulation is based

on the expansion of an equivalent polarization current (the

corresponding integral is taken over the volume of the cavity),

the method presented here has been called “volume integral

equation” formulation.

The analysis of the structure shown in Fig. 1 takes a lot

of computational effort because, in general, all cavity eigen-

w
Fig. 1. Inhomogeneously filled cavity coupled to two parallel waveguides.
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modes are coupled by the spatially dependent permittivity.

The computations can be simplified if we consider cylindrical

waveguides containing cylindrical dielectric inserts according

to Fig. 2. The general formulation will be applied to this

case. Then all cavity eigenmodes of different axial orders are

decoupled. In order to demonstrate the validity of the VIE

formulations, we go even one step further and restrict the

analysis to classes of field distributions which are decoupled

from all other fields. Nevertheless, it will be shown how the

numerical efficiency of the VIE formulation can be enhanced

by some convergence accelerating procedures.

II. THEORY

A. Basic Formulation

Let {En } and {Hm } denote the sets of electric and magnetic

fields, respectively, corresponding to the resonant modes of

the empty short-circuited cavity. The set of curl-free magnetic

eigenfunctions will be denoted by {G~ }. Then the following

orthogonality relations hold:

(la)

(lb)

(lC)

(id)

where the asterisk (*) and ti~~ denote complex-conjugate and

the Kronecker delta, respectively. V denotes the volume of the

short-circuited cavity. Wm and Vn are normalization quantities

corresponding to field energies.

Due to the divergence-free nature of the electric displace-

ment inside the cavity, the set {En } is sufficient for its

expansion

(2a)

where w~ and W. are the resonance frequency of the nth

resonant mode and a normalization frequency, respectively.

s

,,, ,,, ,,, ,,, !,,,,,,,

t- L 1
‘Z1 22 z

Fig. 2. Cylindrical waveguide containing a cylindrical dielectric insert.

For the expansion of the magnetic field, we have to take both

sets {H~ } and {Gn } into account

(2b)

n n

Substituting (2a) and (2b) into Maxwell’s equations and mak-

ing use of the orthogonality property of the cavity eigenmodes

(la)-(id), one gets

w
cm = —an

U()
(3a)

(3b)

(“)
where k and Sg are the unit vector in the axial direction

and the coupling aperture between the cavity and the vth

waveguide, respectively.

The aperture fields are expanded with respect to the eigen-

modes of the waveguides. The transverse electric and the

transverse magnetic fields in the aperture corresponding to the

vth waveguide read

m~EZ(V)Vte$) + ~ yh(”)(vth~) x k) (4+& = ~

@’)=%(Lxd)+fwvt~~)(’b)
‘i i

The eigenmodes obey the orthogonality relations”

J
Vte~) . Vte$) dS = &jPf(V) (5a)

~p )

/
Vth:) . Vth~) dS = &j@(V) (5b)

$’)

/( )
V~e~) x Vih$) . ~ dS = O.

&’)
(5C)

The normalization quantities Pze(V) and P!(”) describe

power flow of the ith TM and the ith TE ;igenmode in

vth waveguide, respectively.

the

the
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The aperture tangential electric fields are continuous

(v)
~xEls~)=kx Et . (6)

Substituting (6) and (4a) into (3b) and (3c) yields

(Lo))([l[][c] - ~ 2[W]a = Re(2) V’(2)+ P(2) vh(2)

- [Reeve- [~h(’)lvh(l))
(7a)

-;,vki= (p(2)]v.(2)+[$.(2)] vh(2,

_ p(l)] v.(1)- ph(l)]vw)

(7b)

where [C], [W], and [V] are a symmetric matrix with elements

Cnm according to (3d) and diagonal matrices with elements ac-

cording to (Is)–(lc), respectively. The quantities a, d, V’(u),

and Vh(v) are column vectors containing the elements an, dm,

V:(v), and Vh(v), respectively. The matrices [R’(V)], [Rh(V)],

[;’(u)] an: [Sh(v)] containing the elements 11~~), R~[”),

Se(v), ~nd S~j”), respectively, represent the coupling between

th~-waveguides eigenmodes and the cavity eigenmodes.

R:!) – 1 /( )Vte(v) x H* . kdS (8a)
jwo Sy) ‘2 n

#v) – 1
nt

/
Vth$) . H: dS

ju, S!)
(8b)

se(~) _ 1
??2 /( )

Vte~) x G; . & dS (8c)
juo $)

(8d)

The series representation of erE according to (2a) does

not converge uniformly. The tangential electric fields of the
(2/)

short-circuited cavity eigenmodes vanish at the apertures S’g

which is not true for the original field. On the other hand, the

series representation of the magnetic field according to (2b)

converges uniformly. Hence, the boundary condition for the

magnetic fields

(I/)
kxH[~(.)=kx Ht (9)

9

can be directly exploited by applying Galerkin’s procedure.

This yields

-@@v)l’c+ [Se(v)l’d) = [MI’(V) (’oa)

-jwo([Rh@,]’c+ [#+’]’d) = ~hv,]~hvt ,,ob,

The superscript ~ signifies the conjugate transpose of the corre-

sponding matrix. [Pe(v)], [WU)], and I’(v), @(V) represent

diagonal matrices and column vectors, res ectively, containing
?the elements P$V), P,!(v), I;(V), and 1? ‘), respectively.

From (3a), (7a), (7b), (lOa), and (~Ob), the cavity field

expansion coefficients an, Cn, and dn can be eliminated. This

results in a linear system of equations relating the expansion

coefficients of the transverse magnetic apertures fields to tlhose

of the transverse electric fields. The matrix equation represents

the generalized admittance matrix of the structure

[1[
~(l) [y(n)] [y(lZ)] VU)
1(2) =

1[ 1[y(W] [y(zZ)] VP) “
(Ila)

The matrix elements are given by

[q= -(-V+”)]-]

(1 lb)

The matrices [R(u)], (S(v)l, and [P(V)l combine the TM

and the TE eigenmod& of th; waveguide~.

P(v)]= [Pm(”)]]

[s(v)]= [Pv)] [se(v)]]

[1[
p(v) = [P~@q [0]

[()] [p44] 1
The same holds for the column vectors V(”),

[1
VW)

v(v) =

Ve(v)

[1

~h(v)
~(v) =

Ie(v) “

(1.lc)

(lld)

(1 le)

and l(V)

(Ilf)

(llg)

The matrices [C] and [V] describe the coupling of the rmo-

nant modes and the curl-free eigenfunctions of the cavity

by inhomogeneity, respectively. In general, all eigenmodes

are coupled, which leads to large matrices and a Ilot of

computation; but in the simpler case—when the cavity is a

section of a waveguide which contains a cylindrical dielectric

insert—the analysis is simpler.

B. Scattering by Dielectric Bodies Inside Waveguides

If the cavity is represented by a waveguide section according
to Fig. 2, the eigenmodes of both waveguides to which the

cavity is coupled are identical.

ezi = e$)
(12a)

hz~ = h$) . (1’2b)
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In the transverse direction, the cavity eigenmodes can be

formulated in terms of the waveguide eigenmodes; whereas

in the axial direction, we have a sine or cosine dependence.

Substituting the electric fields of the cavity eigenmodes into

(3d) and taking the orthogonality property of sine and cosine

into account, we obtain

(13C)

(13d)

where w& and w~n are the resonance frequencies of the TM

and the TE cavity eigenmodes of transverse order i and axial

order n, respectively.

wk=co@2+ (;)2 (14a)

w,n=co@+(;)2. (14b)

The cutoff wavenumbers of the ith TM and the ith TE wave-

guide eigenmodes are represented by k: and k$, respectively.

co and L denote the free-space velocity of light and the

length of the cavity, respectively. In (13a), the superscript

hh means that the coupling between two TE eigenmodes is
considered. The meanings of the superscripts he, eh, and ee

are similar. Note that in (13a) –(13d), all different axial orders

are decoupled. Furthermore, the volume integral has turned

into an integral over the cross section S9 of the waveguide.

The apertures and the waveguide cross section are identi-

cal. This leads to a lot of simplifications for the quantities

describing the coupling between the cavity and the waveguide

eigenmodes, some of which even vanish. This happens when

the coupling between a TE cavity eigenmode and a wave-

guide eigenmode of TM type (and vice versa) is considered.

Substituting these results and (13a) –(13d) into (1 lb), one

arrives at

(15b)

(15C)

(15d)

with

The matrix

[

[LP] [Dh’] 1[Deb] [~ew] =

[

()
[@h] _ & 2 [~h]

[c:;]

has been introduced to allow

(15e)

1
[~he, “

(16)

[c”] - (&)2[w’]

a concise notation. The cavity

normalization quantities W~n, WA, and V,. can be expressed

in terms of the waveguide normalization quantities P,e and

P:.

Wh . LtQph
zn 2’

(17a)

()

(%)2W; n=: l+— (1+ tio)p:
(k;)2

(17b)

u. = y(l + &l))P} . (17C)

In (1 lb), the influence of the curl-free eigenmodes is given

by the term

-(-l) ~jwp(”)]-’ *[s(”)] ’[vI-’p’”)] ~
~o

The summation which is implied in this expression can ana-

lytically be evaluated leading to

_(_l)K ~$(sij cosh(k;L(l – +))

]Wpo sinh(k~L)
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in (15a). The curl-free cavity eigenfunctions enter the hh

part of the generalized admittance matrix only because the

coupling between these eigenfunctions and the TM waveguide

eigenmodes vanishes.

The computation of the generalized admittance matrix ac-

cording to (15a) –(15d) is less CPU time and memory consum-

ing than the general formulation. Due to the decoupling of the

cavity eigenmodes of different axial orders, only a number of

two-dimensional matrices (instead of one three-dimensional

matrix) have to be inverted. The numerical efficiency, how-

ever, can still be enhanced by introducing some convergence

accelerating procedures.

C. Convergence Acceleration

For the sake of simplicity, the analysis will be restricted

to ‘~ electromagnetic fields only in order to discuss the

convergence accelerations. This restriction is possible because,

for some structures, a subset of TE fields can be found which

is decoupled from all other fields. Examples include the TEno

fields in a rectangular waveguide containing a dielectric slab

extending from top to bottom.

In implementing the formulation on a computer, all infinitely

dimensioned matrices and infinite summations have to be

truncated. For large orders, the matrix elements and the sum

terms can be replaced by their asymptotic values. If a closed-

form expression for a series with asymptotic sum terms or

an analytic form of the inverse of an infinitely dimensioned

matrix with asymptotic elements exists, the convergence can

be accelerated considerably.

First the series of (15a) with respect to the axial order n

should be examined. For our purpose, the series is reformu-

lated

2W; m

–x
(%)2

‘~(n) cos(nf3) . (18a)

“L ~=1 (W2W)2D’

For the matrix [~hh(n)], with elements @’j~(n), there holds

The matrix [@[n)] is a diagonal matrix containing the reso-

nance frequencies w~m

The matrix [Qhh] with the elements

(18c)

(18d)

describes the transverse coupling of the eigenmodes. It does

not depend on the axial order n. For large n, w2/ (w$!) 2

behaves like I/n 2. In this case, [~hh(n)] is approximately

equal to [Qhh] ’1. For a cos(nO)/n2 dependence of the sum

terms, a closed-form expression of the series exists. The final

result is

The term

T’

6
– - :(2T-e)

represents the closed-form expression of the asymptotic series

from which

has to be subtracted because, in the range from n = 1 to N,

the asymptotic representation of the sum terms is not valid i~nd

the original series has to be computed.

Using (19), we expect rapid convergence as soon as the

asymptotic representation of the sum terms is valid. Compared

to the summation of the original series, the convergence

acceleration leads to a strong reduction with respect to the

number of sum terms which have to be taken into account.

In order to study the convergence with respect to the trans-

verse order, we should look at the matrix inversion occurring

in (18b). The convergence associated with the inversion of the

infinitely dimensioned matrix is very slow. This means that

even if a huge matrix is inverted, only a small part of [@(n)]

corresponding to the low transverse orders is approximately

correct. The convergence can be accelerated if, instead of the

numerical inverse of the truncated original matrix, the analytic

inverse of an infinitely dimensioned matrix with asymptotic

elements is considered.

For large transverse orders i, w2/ (W$n) 2 tends to zero.

Hence, [@k(n) ] is approximately given by

[1[

&L(.) -

1

[Q??] - W’ ~:[n)]‘2 [Q!;] ‘1 ~2,Da)
—

[Q;?] [Qk;]

with the submatrices

[Q;?]= (Q!?M<,<m,,<j<jp, (20d)
— —

[Q!;] = (Q?:)~<,<m,~<j<m (20e)

Equation (20a) means that w2/ (W$m)2 can be neglected in

comparison to the diagonal elements of [Qhh] for i > M.
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Evaluating the matrix inversion of (20a) with the submatrices

defined in (20b)–(20f) leads to

[1
~M@~

11 —

([Q?!] - [Q?;] [Q;;]-l [Q!!] - U2[Mn)]-2~-1

(21a)

[1

—ML(n)
where D1 ~

[1
denotes the upper left corner of ~hh(n) .

[D~~(n)l = (@:(n)) l<i<M,l<j<M ‘21b)— — — —

Let us now consider the inverse of the infinitely dimen-

sioned matrix ~Qhh] consisting of the submatrices according

to (20b)–(20e~. The inverse of [Qhk] is correspondingly

( ‘k’~l, (Q~~rl, [Q~~r , andsubdivided into the matrices QI 1 1

[1Q~~’I reads

[Q!:’] = ([Q?;] - [QMIQY-l[QH1)-l

Substituting (22b) into (21a) yields

[D~~(n)lH ([QH-1-’J2[Q~fn)l-2)-1

(22a)

(22b)

(23)

Comparing (23) to the original equation (18b) shows that the

convergence acceleration in the transverse direction can be

carried out by simply replacing the truncated coupling matrix

[Qhh] by the numerical inverse of its truncated analytical

inverse [Qhk~] ‘1.

In order to evaluate (19) and (23), it is necessary to know the

inverse of the infinitely dimensioned matrix [Qkh]. In [12],

it has been proven that the analytical inversion of [Qhk] is

obtained if one replaces e; 1 in (18d) by .Er. Hence, for the

elements of [Qh*~~ ], we get

The matrix [Qhh] does not appear in the formulation any-

more. Therefore, only its inverse as given by (24) has to be

calculated.

The application of (23) and (24) instead of the original

relation (18b) leads to a strong reduction in the size of the

transverse coupling matrix which is necessary in order to

achieve convergence. This is especially important because the

number of operations required for the inversion of an (n x n)

matrix is proportional to n3.

III. NUMERICAL RESULTS

Numerical results are computed for structures with the cross

sections shown in Figs. 3 and 4. In describing microwave

components, the scattering matrix is more common than

the admittance matrix. Therefore, the generalized admittance

matrix which we get from the analysis is transformed into the

corresponding scattering matrix.

Fig. 3 shows the cross section of a circular waveguide

containing a dielectric cylinder of length L. The azimuthally

independent TE fields are decoupled from all other fields and

can consequently be treated as a separate class. This follows

from (13a) –(13d). In these equations, the integral over the

cross section of the waveguide Sg can be decomposed into

a radial and an azimuthal integration. Due to the rotational

symmetry of the structure, all fields show a sine or cosine

azimuthal dependence. Keeping the orthogonality property of

these functions in mind, all fields of different azimuthal orders

are decoupled. In addition, for azimuthally independent fields,

TE and TM fields are not coupled because

Fig. 3.

~2a ——————l

Cross section of a circular waveguide containing a dielectric cylinder.

Y

b

o al a2 ax

Fig. 4. Cross section of a rectangular waveguide containing a dielectric slab.
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vanishes in this case. The elements of [Qhh~r ] for azimuthally N = 10, which underscores the necessity for convergence

independent TE fields read accelerations.

Q;;” =
In Fig. 4, a rectangular waveguide which contains a di-

electric slab of length L is shown. For this structure, it can

{

(’-(i~)’)J’’a’+J+2(k(z’z’ ,=j ,Qhhl are

be proven that the y-independent TE fields are decmrpled

1 – (:)2(1 –e,)
from other y-dependent fields. For this class, the elements of

J;(kj%) > ~ ] given by
k; J1(k&)J; k;d)–k:J:(k$z)J1 (k;E)

2$(1 – “) Jo(k:a)Jo(k;a) ((k;) 2-(k:)2 ) ‘ i + ~ Q;;’ =

(25)

[

(
1–(1–6,) +–+–

sin(2k~az) –sin(2k~al)

)

i,=j

where ii and a denote the radii of the dielectric cylinder and
Zk: a >

the circular waveguide, respectively. Jo and .J1 are the Bessel +(1 _ ,r) (’in((~:-~$);)::: ((~: -~;)”’)

functions of order O and 1, respectively. The prime (’) means ,

the derivative of the corresponding function with respect to
_sin((k~+k$jal) :sin((k~+k$)a2)

)

i#j

its argument.
k:+k: >

Fig. 5 shows the frequency dependence of the scattering (26)

parameters S1l and S12 for the IIol circular waveguide eigen-

mode. The frequency band extends from the cutoff frequency
where the coordinates a, al, and a2 are de~ned in Fig. 4. Fig. 6

shows the frequency dependence of the scattering para~meters
of this eigenmode to that of the next higher eigenmode. In this for the Hlo rectangular Waveguide eigenmode. After studlying

band, several resonances are observed. Comparing the results the convergence of the results, statements which are sirnilalr to
to those of a mode-matching method [13], the curves are so those valid for the circular waveguide structure can be made.
close together that differences cannot be seen.

The results of Fig. 5 have been achieved with a maximum
In Table I, the results of the VIE formulation are compared

transverse order M = 20 and a maximum axial order N =
to those of two other methods [14], [15]. ”If we consider a

dielectric slab with
100. The results do not change noticeably as long as M >10

and IV ~ 10 are maintained. Applying the formulation without
L az — al—— —<<1,

convergence accelerations, even for M = 50 and iV = 200, a—a

the results are not stable. This case requires approximately it should behave approximately like a circular dielectric lpost

2500 times more CPU time than the case with M = 10 and which has the same cross sectional area. In [14], this structure

‘fabs(sl l)(—),

abs(slz)(––) in dB

o

-20 L

-40

4 4.5 5 5.5 6 6.5 7
ko a

Targ[sl l)(—),

arg[slp)(––) in 0

K+
,\
S‘!

100 II
~1
1 ‘,
[,

0:.
‘.

‘..
-1oo -.

‘. I ‘1%..1\ .

4 4.5 5 5.5 6 6.5 7
ko a

Tabs(sll) [—),

abs(slp)(––) in dB

o

m+

--- ___------ --

-20

-40

3.5 4 4.5 5 5.5 6
ko a

Targ(sll) [—),,
arg(slzl[––l in 0

mj

i’. .
-.. .

100 ‘ -.-~
-.. .

‘, -.,
0 .

\

-1oo
$;\l

3.5 4 4.5 5 5.5 6
ko a

Fig. 5. Frequency dependence of the scattering parameters of the HOI Fig. 6. Frequency dependence of the scattering parameters of the HIO

eigenmode corresponding to the structure shown in Fig. 3 with ZJ/a = 0.25, eigenmode corresponding to the structure shown in Fig. 4 with alla = ().25,
L/a = 0.5, G. = 10, M = 20, N = 100. az/a = 0.75, L/a = 0.5, G. = 5, M = 20, N = 100.
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TABLE 1
COMPARISONOF THE SCATTERINGPARAMETERSOF THE VIE FORMULATIONWITH THE RESULTSOF [14] AND [15] FOR
THE STRUCTURESHOWN IN FIG. 4 WITH aI/a = 0.45, a2/a = 0.55, L/a = 0.1, e, = 10, A4 = 50, N = 50.

# kO a

WE Formulation Results from [14] Results from [15]

1s’111

in dB
Isz,l
in dB

1s111 1s211

in dB in dB
1s111 1s211

in dB in dB

1 3.173 –0.787 –7.807 –0.783
2

–7.825
3.515 –4.105

–0.785
–2.137

–7.815
–4.087 –2.148 –4.089 –2.147

3 3.857 –4.860 –1.717 –4.834 –1.730 –4.828 –1.733
4 4.199 –4.944 – 1.677 –4.911 – 1.693 –4.905 –1.695
5 4.541 –4.737 –1.778 –4.696 –1.799 –4.702 –1.796
6 4.883 –4.372 –1.975 –4.323 –2.004 –4.349 –1.989
7 5.266 –3.909 –2.266 –3.852 –2.305 –3.903 –2.270
8 5.568 –3.378 –2.672 –3.314 –2.726 –3.384 –2.667
9 5.910 –2.796 –3.236 –2.726 –3.314 –2.807 –3.224

10 6.252 –2.177 –4.043 –2.103 –4.159 –2.187 –4.028

is characterized by an equivalent circuit consisting of lumped

elements; whereas in [15], a surface integral formulation has

been applied. The results of the three methods are in good

agreement, which proves the validity of the VIE formulation.

IV. CONCLUSIONS

Inhomogeneously filled cavities cQupled to waveguides have

been analyzed using a VIE formulation. In the basic formula-

tion, theinhomogeneity inside the cavity maybe an arbitrary

function of space. It has been shown that the application of

the method to scattering by dielectric bodies inside wave-

guides leads to several simplifications. In order to enhance

the numerical efficiency of the formulation, convergence ac-

celerating procedures have been discussed. Numerical results

have been calculated for some structures. The validity of

the method has been checked by comparing the results to

those obtained by other methods. From the comparison of the

computational requirements of the VIE formulation with and

without convergence accelerations, it has been demonstrated

that the numerical efficiency is drastically enhanced by the

convergence accelerations.
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